UDC 531.36

ON THE STABILITY IN THE LARGE OF NONLINEAR SYSTEMS IN THE CRITICAL CASE OF TWO ZERO ROOTS*

G.A. LEONOV

The known results of /1,2/ dealing with the necessary conditions of stability in the large of two-dimensional dynamic systems, are extended to the classes of systems of any dimensionality.

1. Let us consider the equations of the system of indirect automatic control /3/

$$z' = Az + b\varphi_1(\sigma), \ \sigma' = c^*z - \rho\varphi_2(\sigma) \tag{1.1}$$

assuming that the constant $n \times n$ matrix A has one zero eigenvalue and n-1 eigenvalues with negative real parts, b and c are constant n-vectors, ρ is a pure number, $\varphi_1(\sigma)$ and $\varphi_2(\sigma)$ are functions continuous and bounded on $(-\infty, +\infty)$ and satisfying the relation $\varphi_1(\sigma)\varphi_2(\sigma) \ge 0$, $\forall \sigma \in (-\infty, +\infty)$, and an asterisk denotes transposition. In what follows we shall also assume that the set $\{\sigma \mid \varphi_1(\sigma) \ge 0, \sigma \ge \beta\}$, $\forall \beta \in (-\infty, +\infty)$ is nonempty and the sets of zeros of the functions $\varphi_1(\sigma)$ and $\varphi_2(\sigma)$ coincide. We introduce the function $\chi_1(p) = c^* (A - pI)^{-1}b$, where p is a complex number and I a unit matrix, and put

$$\kappa = \lim_{p \to 0} p \chi_1(p), \chi_2(p) = \chi_1(p) - \kappa p^{-1}$$

Theorem. Let x > 0, $\rho \ge 0$ and let a solution exist of the second order system

$$\eta^{\cdot} = -\phi_1(\theta), \quad \theta^{\cdot} = \eta - \sqrt{\frac{4}{\kappa}} \left(\tau \phi_1(\theta) + \rho \phi_2(\theta) \right)$$
(1.2)

where τ is a positive number satisfying the inequality

 $\tau > \operatorname{Re} \chi_{2}(i\omega) + x^{-1} [|\chi_{2}(i\omega)|^{2} + \omega^{2} |\chi_{2}(i\omega)|^{2}], \quad \forall \omega \in (-\infty, +\infty)$ (1.3)

such that

$$\theta^{\cdot}(t) > 0, \forall t \ge 0 \tag{1.4}$$

Then a solution $z(t), \sigma(t)$ of the system (1.1) exists satisfying the inequality

$$\sigma'(t) > 0, \quad \forall t \ge 0 \tag{1.5}$$

If in addition a solution η (t), θ (t) of the system (1.2) and a number $\epsilon_1>0~$ can be found such that

$$\theta^{*}(t) \ge \varepsilon_{1}, \ \forall t \ge 0 \tag{1.6}$$

then a solution $z(t), \sigma(t)$ of the system (1.1) and a number $\varepsilon_2 > 0$ exists, for which the inequality

$$\sigma'(t) \ge \varepsilon_2, \quad \forall t \ge 0 \tag{1.7}$$

holds. The theorem and the results of the paper /l/ by Krasovskii together yield the following assertion.

Corollary 1. Let $\varkappa > 0$, $\rho \ge 0$ and

$$\frac{\Phi_1(\mathfrak{z})}{\mathfrak{z}} > 0, \quad \frac{\Phi_2(\mathfrak{z})}{\mathfrak{z}} > 0, \quad V\mathfrak{z} \neq 0$$

Then the necessary condition for the stability in the large of (1.1) is, that the relations

$$\sum_{+\infty}^{0} \mathbf{e}^{\mathbf{1}}(\mathbf{2}) \, q\mathbf{2} = +\infty, \quad \sum_{-\infty}^{0} \mathbf{e}^{\mathbf{1}}(\mathbf{2}) \, q\mathbf{2} = -\infty$$

hold. We note that in the case of $\varphi_1(\sigma) \equiv \varphi_2(\sigma)$ an analogous result /4/ was extended in /5-7/

^{*}Prikl.Matem.Mekhan.,45,No.4,752-755,1981

to multidimensional systems (*).

The theorem formulated above and Theorem 3 of /2/ together yield the following assertion:

Corollary 2. Let x > 0, $\rho > 0$, $\varphi_1(\sigma) \equiv \varphi_1(\sigma + 2\pi)$, the function $\varphi_1(\sigma)$ be continuously differentiable and $\varphi_1'(\sigma)$ have exactly two zeros on the set $[0, 2\pi)$. Then the system (1, 1) has a circular /8/ solution if

$$\int_{0}^{2\pi} \varphi_1(\sigma) d\sigma \neq 0$$

The above result was obtained for the case n = 2, $\rho = 0$ in /9,10/.

2. To prove the theorem, we shall have to consider the first order equation

$$\frac{dF}{d\theta} = \frac{-\alpha F - \psi(\theta)}{F - u(\theta)}$$
(2.1)

where α is a nonnegative number and $\psi\left(\theta\right),\,\boldsymbol{\mu}\left(\theta\right)$ are continuous functions.

Lemma 1. Let the function F(0) satisfy on the interval $(0_0, +\infty)$ the equation (2.1) and the inequalities

$$F(\theta) > u(\theta), F(\theta_0) > 0,$$

Let also the relation

$$\Psi(\theta) < 0, \quad \forall \ \theta \rightleftharpoons \{\theta \mid u \mid (\theta) < 0\}$$
(2.2)

hold and the set

 $\Xi(\beta) = \{\theta \mid u(\theta) \ge 0, \ \theta > \beta\}$

be nonempty for any value of β on the same interval. Then $F(\theta) > 0, \forall \theta \ge \theta_0$.

Proof. Assume the opposite, i.e. let a number $\theta_1 > \theta_0$ exist for which $F(\theta_1) \le 0$. Since the set $\Xi(\beta)$ is nonempty, we can find a point $\theta_2 > \theta_1$ such that $F(\theta_2) > 0$. Therefore a number $\theta_3 \equiv (\theta_0, \theta_2)$ exists such that $F'(\theta_3) \equiv 0$, $F(\theta_3) \le 0$. Then the relation (2.1) yields $\alpha F(\theta_3) = -\psi(\theta_3)$, $u(\theta_3) < F(\theta_3) \le 0$, and from this it follows that $u(\theta_3) < 0$, $\psi(\theta_3) \ge 0$ which contradicts (2.2).

Let us now introduce the numbers $\lambda \ge 0$, v > 0, θ_0 , the continuously differentiable functions W(t), $\sigma(t)$, $(t \ge 0)$, $F(\theta)$, $(\theta \ge \theta_0)$ and continuous functions $\psi(\theta)$, $f(\theta)$, $(\theta \equiv R^{-1})$.

Lemma 2. Let the following conditions hold:

1)	$F(0) > 0, \forall 0 \ge \theta_0$
2)	$F(\theta) > \sqrt{2v} f(\theta), \ \forall \ \theta \ge \theta_0$
3)	$F'(\theta)F(\theta) + \psi(\theta) \leqslant 0, \ V \theta \ge \theta_0$
4)	$F'(\theta)[F(\theta) - \sqrt{2v}f(\theta)] + \lambda \sqrt{2v}F(\theta) + \psi(\theta) = 0, \forall \theta \ge \theta_0$
5)	$W(t) \ge -v [\sigma^{\dagger}(t) + f(\sigma(t))]^2, \forall t \ge 0$
6)	$W^{*}(t) + 2\lambda W(t) - \psi(\sigma(t))[\sigma^{*}(t) + f(\sigma(t))] \leq 0, \forall t \geq 0$
7)	$\sigma'(0) > 0, \ \sigma'(0) + f(\sigma(0)) > 0, \ 2W(0) + F(\sigma(0))^{2} < 0$
	$\sigma(0) \ge \theta_0$

Then

$$\mathfrak{s}^{*}(t) \ge \frac{F(\mathfrak{s}(t))}{\sqrt{2v}} - f(\mathfrak{s}(t)) > 0, \quad \forall t \ge 0$$

$$(2.3)$$

Proof. Consider the function

 $V(t) = W(t) + \frac{1}{2}F(\sigma(t))^{2}$

From conditions 7) of the lemma it follows that V(0) < 0. Therefore for sufficiently small t > 0 the function V(t) is well defined and V(t) < 0. We further assume that V(t) is defined on [0, T] and $V(t) \le 0$, $V t \in [0, T]$. Then by virtue of conditions 5) we obtain the inequality

$$v [\sigma^{*}(t) + f(\sigma(t))]^{2} \ge 0.5 F(\sigma(t))^{2}, \forall t \in [0, T]$$
(2.4)

This, together with conditions 1) and 7) of the lemma, yields

*) See also Kustarov S.N. Estimation of the sector of absolute stability of nonlinear controlled systems. Avtoref. dis. na soiskanie uch. st. kand. fiz. mat. nauk. Leningrad, LGU, 1973.

$$\sigma^{\bullet}(t) + f(\sigma(t)) > 0, \quad \forall t \in [0, T]$$

$$(2.5)$$

From the inequalities (2.4) and (2.5) and conditions 1) and 2) follows the assertion (2.3) of the lemma for $t \in [0, T]$ and this, together with conditions 3) and 4) of the lemma, yields the relation

$$\lambda F^2 + [\psi + F'F][\sigma' + f] - F'Ff \leqslant (\sqrt{2\nu})^{-1}F[F'F + \lambda\sqrt{2\nu}F - \sqrt{2\nu}fF' + \psi] = 0, \quad \forall \ t \in [0, T]$$

where $\psi_{i,f}$ and F are functions of $\sigma(t)$. Therefore using conditions 6) of the lemma we obtain

 $V^{\bullet} + 2\lambda V \leqslant 0, \quad \forall t \in [0, T]$ (2.6)

Let us now assume that V(t) < 0, $\forall t \in [0, T)$ and, that one of the following relations holds: V(T) = 0, $\sigma(T) = \theta_0$. Since, as was shown before, when $t \in [0, T) \sigma'(t) > 0$, then the relation $\sigma(T) = \theta_0$ cannot hold. On the other hand, from (2.6) follows the inequality $V(T) \leq V(0) \exp(-2\lambda T) < 0$. Therefore the function V(t) is defined for all $t \ge 0$ and V(t) < 0, $\forall t \ge 0$. But then, as we have shown before, the estimate (2.3) also holds for all $t \ge 0$.

Lemma 3. Let

$$\psi(\theta)f(\theta) \ge 0, \quad \forall \ \theta \in R^1, \quad F(\theta_0) > 0, \quad \psi(\theta) < 0, \quad \forall \ \theta \in \{\theta \mid f(\theta) < 0\}$$

and let the set

 Ξ (β) = { θ | f (θ) \geq 0, 0 > β }

be nonempty for any value of β . The conditions 2) and 4) of Lemma 2 imply the conditions 1) and 3) of this lemma. Lemma 3 is a corollary of Lemma 1.

Proof of the theorem. We shall first note that a nonsingular linear transformation can be used to reduce the system (1.1) to the form /8/

$$y^{\bullet} = Qy + q\phi_1(\sigma), \ \eta^{\bullet} = \phi_1(\sigma), \ \sigma^{\bullet} = r^* y - \varkappa \eta - \rho \phi_2(\sigma)$$
(2.7)

where Q is a $(n-1) \times (n-1)$ matrix all eigenvalues of which have negative real parts, while r and q are (n-1)-vectors. Theorem 1.2.7 of /8/ can be used to show that the inequality (1.3) implies the existence of a matrix $H = H^* > 0$ satisfying the relation

$$2y^*H[Qy + q\xi] - \xi r^*y - \tau\xi^2 + x^{-1}[(r^*y)^2 + (r^*(Qy + q\xi))^2] < 0, \ \forall |y| + |\xi| \neq 0$$
(2.8)

Let us introduce the function

$$\begin{split} W(t) &= y(t)^* H y(t) + \varkappa^{-1} \left[r^* y(t) \right]^2 - (\varkappa/2) \eta(t)^2 + \nu \\ \psi(\sigma) &= \varphi_1(\sigma), f(\sigma) = \tau \varphi_1(\sigma) + \rho \varphi_2(\sigma) \end{split}$$

where $y(t), \eta(t), \sigma(t)$ is a solution of the system (2.7), and assume that $v = 2/x, \lambda = 0$. It is clear that by virtue of the boundedness of $\varphi_1(\sigma)$ and $\varphi_2(\sigma)$, a number v > 0 exists on R^1 for which $W(t) \doteq v[\sigma^*(t)] = 0$. We can be the system of the boundedness of $\varphi_1(\sigma) = 0$.

$$W(t) + v \left[\sigma(t) + f(\sigma(t))\right]^2 \ge 0, \quad \forall t \ge 0$$

Moreover, taking the inequality (2.8) into account we obtain

$$W' - \varphi_1 \left[\sigma' + t \right] = 2y^* H \left[Qy + q \, \varphi_1 \right] + 2x^{-1} r^* y \left[r^* (Qy + q \varphi_1) \right] - \varkappa \eta \varphi_1 - \varphi_1 \left[r^* y - \varkappa \eta + \tau \varphi_1 \right] \le 0, \quad \forall t \ge 0$$

This fulfils conditions 5) and 6) of Lemma 2. Let now $F(\theta)$ be the solution of

$$\frac{dF}{d\theta} = \frac{-\varphi_1(\theta)}{F - \sqrt{4\kappa^{-1}}(\tau\varphi_1(\theta) + \wp\varphi_2(\theta))}$$
(2.9)

corresponding to the solution $\eta(t)$, $\theta(t)$ of the system (1.2) satisfying the inequality (1.4). Here $\theta_0 = \theta(0)$. It is clear that in this case conditions 2) and 4) of Lemma 2 hold. Therefore by virtue of Lemma 3 so do conditions 1) and 3) of Lemma 2. Thus if we choose, for the solution y(t), $\eta(t)$, $\sigma(t)$ of the system (2.7), the initial conditions y(0), $\eta(0)$, $\sigma(0)$ in such a manner that

$$\begin{aligned} \sigma\left(0\right) &= \theta_{0}, \quad y\left(0\right) = 0, \\ \eta\left(0\right) &< \min\left\{\frac{\tau}{\varkappa} \ \varphi_{1}\left(\theta_{0}\right), \ -\frac{\varphi}{\varkappa} \ \varphi_{2}\left(\theta_{0}\right), \ -\sqrt{\frac{3\nu + F\left(\theta_{0}\right)^{2}}{\varkappa}}\right\}, \end{aligned}$$

then condition 7) of Lemma 2 will also hold and so will the inequality (2.3). If in addition (1.6) holds, then

$$F(\theta) - 2x^{-1/2} (\tau \varphi_1(\theta) + \rho \varphi_2(\theta)) \ge \varepsilon_1, \ \forall \theta \ge \theta_0$$

and hence

$$\mathbf{\sigma}^{\cdot}(t) \ge \frac{F\left(\mathbf{\sigma}\left(t\right)\right)}{\sqrt{2v}} - f\left(\mathbf{\sigma}\left(t\right)\right) \ge \frac{\varepsilon_{1}}{\sqrt{2v}} = \varepsilon_{2}, \quad \forall t \ge 0$$

REFERENCES

- KRASOVSKII N.N., On a problem of stability of motion in the large. Dokl. Akad. Nauk SSSR, Vol.88, No.3, 1953.
- 2. BELIUSTINA L.N. and BELYKH V.N., Qualitative study of a dynamic system on a cylinder. Differents. uravneniia, Vol.9, No.3, 1973.
- 3. LUR'E A.I., Certain Nonlinear Problems of the Theory of Automatic Control.Moscow-Leningrad GOSTEKHIZDAT, 1951.
- KRASOVSKII N.N., Theorems on the stability of motions governed by a system of two equations. PMM, Vol.16, No.5, 1952.
- 5. PLISS V.A., Certain Problems of the Theory of Stability in the Large. Leningrad, LGU, 1958.
- 6. IAKUBOVICH V.A., On the boundedness and stability in the large of solutions of certain nonlinear differential equations. Dokl. Akad. Nauk SSSR, Vol.121, No.6, 1958.
- 7. EFENDUEV A.R. and BALITINOV M.A., On the asymptotic stability in the large of a nonlinear system. Differents. uravneniia, Vol.4, No.4, 1968.
- 8. GELIG A.Kh., LEONOV G.A., and IAKUBOVICH V.A., Stability of Nonlinear Systems with Nonunique State of Equilibrium. Moscow, NAUKA, 1978.
- BELYKH V.N., and NEKORKIN V.I., Qualitative investigation of a system of three differential equations from the theory of phase synchronization. PMM, Vol.39, No.4, 1975.
- 10. SHAKHGIL'DIAN V.V. and BELIUSTINOI L.N.M. (ed.) Phase Synchronization. SVIAZ', 1975.

Translated by L.K.