on the stability in the large of nonlinear systems IN THE CRITICAL CASE OF TWO ZERO ROOTS*

G.A. LEONOV

The known results of $/ 1,2 /$ dealing with the necessary conditions of stability in the large of two-dimensional dynamic systems, are extended to the classes of systems of any dimensionality.

1. Let us consider the equations of the system of indirect automatic control /3/

$$
\begin{equation*}
z^{*}=A z+b \varphi_{1}(\sigma), \sigma^{*}=c^{*} z-\rho \varphi_{2}(\sigma) \tag{1.1}
\end{equation*}
$$

assuming that the constant $n \times n$ matrix A has one zero eigenvalue and $n-1$ eigenvalues with negative real parts, b and c are constant n-vectors, ρ is a pure number, $\varphi_{1}(\sigma)$ and $f_{2}(\sigma)$ are functions continuous and bounded on $(-\infty,+\infty)$ and satisfying the relation $\varphi_{1}(\sigma) \varphi_{2}(\sigma) \geqslant 0$, $\forall \sigma \in(-\infty$, $+\infty$, and an asterisk denotes transposition. In what follows we shall also assume that the set $\left\{\sigma \mid \varphi_{1}(\sigma) \geqslant 0, \sigma \geqslant \beta\right\}, \forall \beta E(-\infty,+\infty)$ is nonempty and the sets of zeros of the functions $\varphi_{1}(\sigma)$ and $\varphi_{2}(\sigma)$ coincide. We introduce the function $\chi_{1}(p)=c^{*}(A-p I)^{-1} b$, where p is a complex number and I a unit matrix, and put

$$
\chi=\lim _{p \rightarrow 0} p \chi_{1}(p), \chi_{2}(p)=\chi_{1}(p)-\varkappa p^{-1}
$$

Theorem. Let $x>0, \rho \geqslant 0$ and let a solution exist of the second order system

$$
\begin{equation*}
\eta^{*}=-\varphi_{1}(\theta), \quad \theta^{*}=\eta-\sqrt{\frac{4}{x}}\left(\tau \varphi_{1}(\theta)+\rho \varphi_{2}(\theta)\right) \tag{1.2}
\end{equation*}
$$

where τ is a positive number satisfying the inequality

$$
\begin{equation*}
\tau>\operatorname{Re} \chi_{2}(i \omega)+x^{-1}\left[\left|\chi_{2}(i \omega)\right|^{2}+\omega^{2}\left|\chi_{2}(i \omega)\right|^{2}\right], \quad \forall \omega \in(-\infty,+\infty) \tag{1.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta^{*}(t)>0, \mathrm{~V} i \geqslant 0 \tag{1.4}
\end{equation*}
$$

Then a solution $z(t), \sigma(t)$ of the system (l.1) exists satisfying the inequality

$$
\begin{equation*}
\sigma^{*}(t)>0, \quad \mathrm{~V} t \geqslant 0 \tag{1.5}
\end{equation*}
$$

If in addition a solution $\eta(t), \theta(t)$ of the system (1.2) and a number $\varepsilon_{1}>0$ can be found such that

$$
\begin{equation*}
\theta^{\circ}(t) \geqslant \varepsilon_{\mathrm{I}}, \forall t \geqslant 0 \tag{1.6}
\end{equation*}
$$

then a solution $=(t), \sigma(t)$ of the system (1.1) and a number $\varepsilon_{2}>0$ exists, for which the inequality $\sigma^{*}(t) \geqslant \varepsilon_{2}, \quad \forall t \geqslant 0$
holds. The theorem and the results of the paper /1/ by Krasovskii together yield the following assertion.

Corollary 1 . Let $x>0, \rho \geqslant 0$ and

$$
\frac{\varphi_{1}(J)}{\sigma}>0, \quad \frac{\varphi_{2}(J)}{J}>0, \quad V_{J} \neq 0
$$

Then the necessary condition for the stability in the large of (1.1) is, that the relations

$$
\int_{0}^{+\infty} \varphi_{1}(s) d s=+\infty, \quad \int_{0}^{\infty} \varphi_{1}(s) d s=-\infty
$$

hold. We note that in the case of $f_{1}(\sigma) \cong \varphi_{2}(\sigma)$ an analogous result/4/ was extended in $/ 5-7 /$
*Prikl.Matem.Mekhan.,45,No.4,752-755,1981
to multidimensional systems (*).
The theorem formulated above and Theorem 3 of $/ 2 /$ together yield the following assert.lon:
Corollary 2. Let $x>0, ~ \rho \geqslant 0, ~ \tau_{1}(\sigma)=\Phi_{2}(\sigma) \equiv \Phi_{1}(\sigma+2 \pi)$, the function $\psi_{i}(\sigma)$ be ontinuousi differentiable and $f^{\prime}(0)$ have exactly two zeros on the set $10,2 \pi$. Then the syster. (l. l; faz a circular $/ 8 /$ solution if

$$
\int_{n}^{2 \pi} \varphi_{1}(s) d s=0
$$

The above result was obtained for the case $n=2, \rho=0$ in $/ 9,10 /$.
2. To prove the theorem, we shall have to consider the first order equation

$$
\begin{equation*}
\frac{d l}{d \theta}-\frac{-\alpha H-\varphi(\theta)}{F-\mu(\theta)} \tag{2.1}
\end{equation*}
$$

where α is a nonnegative number and $\psi(\theta), u(\theta)$ are continuous functions.
Lemma l. Let the function $F(0)$ satisfy on the interval $\left(\theta_{0},+\infty\right)$ the equation (2.l) and the inequalities

$$
F(\theta)>u(\theta), \quad F\left(\theta_{0}\right)>0
$$

Let also the relation

$$
\begin{equation*}
\psi(\theta)<0, \quad \forall \theta \in\{\theta \mid u(\theta)<0\} \tag{2.2}
\end{equation*}
$$

hold and the set.

$$
\equiv(\beta) \neq\{0 \mid u(\theta) \geqslant 0,0>\beta\}
$$

be nonempty for any value of β on the same interval. Then $F(\theta)>0, \forall 0 \geq \theta_{0}$.
Proof. Assume the opposite, i.e. let a number $\theta_{1}>\theta_{0}$ exist for which $F\left(\theta_{1}\right) \leqslant 0$. Since the set $E(\beta)$ is nonempty, we car find a point $0_{2}>\theta_{1}$ such that $F\left(\theta_{2}\right)>0$. Therefore a number $\theta_{3} \in\left(\theta_{0}, \theta_{2}\right)$ exists such that $F^{\prime}\left(\theta_{3}\right)=0, F\left(\theta_{3}\right) \leqslant 0$. Then the relation (2.l) yields $\alpha F\left(\theta_{3}\right)=-\psi\left(\theta_{3}\right)$, $u\left(\theta_{3}\right)<F\left(\theta_{3}\right) \leqslant 0$, and from this it follows that $u\left(\theta_{3}\right)<0, \psi\left(\theta_{3}\right) \geqslant 0$ which contradicts (2.2).

Let us now introduce the numbers $\lambda \geqslant 0, v>0, \theta_{0}$, the continuously differentiable functions $\left.W(t), \sigma(t),(t \geqslant 0), F(A), i \theta \geqslant \theta_{0}\right)$ and continuous functions $\psi(\theta), \quad(\theta),\left(\theta \in R^{1}\right)$.

Lemma 2 . Let the following conditions hold:

$$
\begin{aligned}
& \begin{array}{l}
\text { 1) } \quad F(0)>0, \forall \mathrm{v} \geqslant \theta_{0} \\
\text { 2) } \quad F(0)>\sqrt{2 v} f(0), \forall 0 \geqslant \theta_{0}
\end{array} \\
& \text { 3) } F^{\prime}(\theta) F(\theta)+\Psi(\theta) \leqslant 0, v \theta \geqslant \theta_{0} \\
& \text { 4) } \quad F^{\prime}(0) \mid F(\theta)-\sqrt{2 v} f(\theta) j+\operatorname{A} \sqrt{2 v} F(\theta) \text { - } \psi(\theta)=0, \quad \forall \theta \geqslant \theta_{0} \\
& \text { 5) } W(t) \geqslant-v\left[\sigma^{\circ}(t)+f(\sigma(t))\right]^{2}, \forall t \geqslant 0 \\
& \text { 6) } \quad W^{\prime \prime}(t)+2 \lambda W(t)-\psi(\sigma(t))\left[\sigma^{\prime}(t)+f(\sigma(t))\right] \leqslant 0, \quad \forall_{t} \geqslant 0 \\
& \text { 7) } \quad \sigma^{\cdot}(0)>0, \sigma^{*}(0)+f(\sigma(0))>0, \quad 2 W(0)+F(\sigma(0))^{2}<0 \\
& \text { } \sigma(0) \geqslant \theta_{0}
\end{aligned}
$$

Then

$$
\begin{equation*}
\sigma^{\prime}(t) \geqslant \frac{F(0(t))}{\sqrt{2 v}}-i(5(t))>0, \quad \forall t \geqslant 0 \tag{2.3}
\end{equation*}
$$

Proof. Consider the function

$$
V(t)=W(t)+1 / 1 / F(\sigma(t))^{2}
$$

From conditions 7) of the lemma it follows that $V(0)<0$. Therefore for sufficiently small $t>$ 0 the function $V(t)$ is well defined and $V(t)<0$. We further assume that $V(t)$ is defined on $[0, T]$ and $V(t) \leqslant 0, V t \in\{0, T\}$. Then by viztue of conditions 5$)$ we obtain the inequality

$$
\begin{equation*}
v\left[\sigma^{\circ}(t)+f(\sigma(t))\right]^{2} \geqslant 0,5 F(\sigma(t))^{2}, V t \in[0, T] \tag{2.4}
\end{equation*}
$$

This, together with conditions 1! and 7) of the lemma, yields

[^0]\[

$$
\begin{equation*}
\sigma^{*}(t)+f(\sigma(t))>0, \quad \vee t \in[0, T] \tag{2.5}
\end{equation*}
$$

\]

From the inequalities (2.4) and (2.5) and conditions 1) and 2) follows the assertion (2.3) of the lemma for $t \in[0, T]$ and this, together with conditions 3) and 4) of the lemma, yields the relation

$$
\lambda F^{2}+\left[\psi+F^{\prime} F\right]\left[\sigma^{\circ}+f\right]-F^{\prime} F f \leqslant(\sqrt{2 v})^{-1} F\left[F^{\prime} F+\lambda \sqrt{2 v F}-\sqrt{2 v} F^{\prime}+\psi\right]=0, \quad \vee_{t} \in[0, r]
$$

where ψ, f and F are functions of $\sigma(t)$. Therefore using conditions 6) of the lemma we obtain

$$
\begin{equation*}
V^{*}+2 \lambda V \leqslant 0, \quad V_{t} \in[0, T] \tag{2.6}
\end{equation*}
$$

Let us now assume that $V(t)<0, \forall t \in[0, T)$ and, that one of the following relations holds: $V(T)=0, \sigma(T)=\theta_{0}$. Since, as was shown before, when $t \in(0, T) \sigma^{*}(t)>0$, then the relation $\sigma(T)=\theta_{0}$ cannot hold. On the other hand, from (2.6) follows the inequality $V(T) \leqslant V(0) \exp (-2 \lambda T)<0$. Therefore the function $V(t)$ is defined for $a l l t \geqslant 0$ and $V(t)<0, V t \geqslant 0$. But then, as we have shown before, the estimate (2.3) also holds for all $t \geqslant 0$.

Lemma 3. Let

$$
\psi(\theta) f(\theta) \geqslant 0, \quad \forall 0 \in R^{2}, \quad F\left(\theta_{0}\right)>0, \quad \psi(\theta)<0, \quad \vee \theta \in\{0 \mid f(\theta)<0\}
$$

and let the set

$$
\Xi(\beta)=\{\theta \mid f(\theta) \geqslant 0, \theta>\beta\}
$$

be nonempty for any value of β. The conditions 2) and 4) of Lemma 2 imply the conditions 1) and 3) of this lemma. Lemma 3 is a corollary of Lemma 1.

Proof of the theorem. We shall first note that a nonsingular linear transformation can be used to reduce the system (1.1) to the form /8/

$$
\begin{equation*}
y^{\dot{\prime}}=Q y \div q^{*} P_{1}(\sigma), \eta^{*}-\varphi_{1}(\sigma), \sigma^{*}-r^{*} y-x \eta-P \varphi_{2}(\sigma) \tag{2.7}
\end{equation*}
$$

where Q is a $(n-1) \times(n-1)$ matrix all eigenvalues of which have negative real parts, while r and q are $(n-1)$-vectors. Theorem 1.2 .7 of $/ 8 /$ can be used to show that the inequality (1.3) implies the existence of a matrix $H=H^{*}>0$ satisfying the relation

$$
\begin{equation*}
\left.2 y^{*} H \mid Q y+q \xi\right]-\xi r^{*} y-\tau \xi^{2}+x^{-1}\left[\left(r^{*} y\right)^{2}+\left(r^{*}(Q y+q \xi)^{2}\right]<0, \forall|y| \div|\xi| \neq 0\right. \tag{2.8}
\end{equation*}
$$

Let us introduce the function

$$
\begin{aligned}
& W(t)=y(t)^{*} H y(t)+x^{-1}\left[r^{*} y(t)\right]^{2}-\left(x^{\prime} 2\right) \eta(t)^{2} \div v \\
& \psi(\sigma)=\varphi_{1}(\sigma), f(\sigma)=\tau \varphi_{1}(\sigma)+\rho \varphi_{\mathbf{z}}(\sigma)
\end{aligned}
$$

where $y(t), \eta(t), \sigma(t)$ is a solution of the system (2.7), and assume that $v=2 / x, \hat{\lambda}=0$. It is clear that by virtue of the boundedness of $\varphi_{1}(\sigma)$ and $\varphi_{2}(\sigma)$, a number $v>0$ exists on l^{1} for which

$$
W(t)+v\left[\sigma^{\cdot}(t)+f(\sigma(t)]^{2} \geqslant 0, \forall t \geqslant 0\right.
$$

Moreover, taking the inequality (2.8) into account we obtain

$$
W^{\prime}-\varphi_{1}\left[\sigma^{*}+\eta\right]=2 y^{*} H\left[Q y+q \varphi_{1}\right]+2 x^{-1} r^{*} y\left[r^{*}\left(Q y+q \varphi_{1}\right)\right]-x \eta \varphi_{1}-\varphi_{1}\left[r^{*} y-x \eta+\tau \varphi_{1}\right] \leqslant 0, \quad \forall t \geqslant 0
$$

This fulfils conditions 5) and 6) of Lemma 2. Let now $F(\theta)$ be the solution of

$$
\begin{equation*}
\frac{d F}{d \theta}=\frac{-\varphi_{1}(\theta)}{F-\sqrt{4 \kappa^{-1}}\left(\tau \varphi_{1}(\theta)+p \varphi_{2}(\theta)\right)} \tag{2.9}
\end{equation*}
$$

corresponding to the solution $\eta(t), \theta(t)$ of the system (1.2) satisfying the inequality (1.4). Here $\theta_{0}=\theta(0)$. It is clear that in this case conditions 2) and 4) of Lemma 2 hold. Therefore by virtue of Lemma 3 so do conditions 1) and 3) of Lemma 2. Thus if we choose, for the solution $y(t), \eta(t), \sigma(t)$ of the system (2.7), the initial conditions $y(0), \eta(0), \sigma(0)$ in such a mantur that

$$
\begin{aligned}
& \sigma(0)=\theta_{0,} \quad y(0)=0, \\
& \eta(0)<\min \left\{\frac{\tau}{x} \boldsymbol{T}_{1}\left(\theta_{0}\right),-\frac{\rho}{x} \varphi_{:}\left(\theta_{0}\right),-\sqrt{\frac{3 v+f\left(\theta_{0}\right)^{2}}{x}}\right\},
\end{aligned}
$$

then condition 7) of Lemma 2 will also hold and so will the inequality (2.3). If in addition (1.6) holds, then

$$
F(\theta)-2 x^{-1_{2}}\left(\tau \varphi_{1}(\theta)+\rho \varphi_{2}(0)\right) \geqslant \varepsilon_{1}, \quad \forall \theta \geqslant \theta_{0}
$$

and hence

$$
\sigma^{\cdot}(t) \geqslant \frac{F(\sigma(t))}{\sqrt{2 v}}-f(\sigma(t)) \geqslant \frac{\varepsilon_{1}}{\sqrt{2 v}}=\varepsilon_{2}, \quad \forall t \geqslant 0
$$

REFERENCES

1. KRASOVSKII N.N., On a problem of stability of motion in the large. Dokl. Akad. Nauk SSSR, vol.88, No.3, 1953.
2. BELIUSTINA L.N. and BELYKH V.N., Qualitative study of a dynamic system on a cylirder. Differents. uravneniia, Vol.9, No.3, 1973.
3. LUR'E A.I., Certain Nonlinear Problems of the Theory of Automatic Control. Mosciuw-Leningrad GOSTEKHIZDAT, 1951.
4. KRASOVSKII N.N., Theorems on the stability of motions governed by a system of twi equations. PMM, Vol.16, No.5, 1952.
5. PLISS V.A., Certain Problems of the Theory of Stability in the Large. Leningrad, LGU, 1958.
6. IAKUBOVICH V.A., On the boundedness and stability in the large of solutions of certain nonlinear differential equations. Dokl. Akad. Nauk SSSR, Vol.121, No.6, 1958.
7. EFENDUEV A.R. and BALITINOV M.A., On the asymptotic stability in the large of a nonlinear system. Differents. uravneniia, Vol.4, No.4, 1968.
8. GELIG A.Kh., LEONOV G.A., and IAKUBOVICH V.A., Stability of Nonlinear Systems with Nonunique State of Equilibrium. Moscow, NAUKA, 1978.
9. BELYKH V.N., and NEKORKIN V.I., Qualitative investigation of a system of three differential equations from the theory of phase syrchronization. PMM, Vol.39, No.4, 1975.
10. ShakhGilddian v.V. and beliustinoi L.N.M. (ed.) Phase Synchronization. SVIAZ', !975.

[^0]: *) See also Kustarov S.N. Estimation of the sector of absolute stability of nonlinear controlled systems. Avtoref. dis. na soiskarie uch. st. kand. fiz. mat. nauk. Leningrad, LGU, ig73.

