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ON THE STABILITY IN THE LARGE OF NONLINEAR SYSTEMS 
IN THE CRITICAL CASE OF TWO ZERO ROOTS* 

G.A. LEONOV 

The known results of /1,2/ dealing with the necessary conditions of stability in the large of 

two-dimensional dynamic systems, are extended to the classes of systems of any dimensionality. 

1. Let us consider the equations of the system of indirect automatic control /3/ 

i' = Ai + brq, (a), a’ = C*Z - P’F, (a) (1.1) 

assuming that the constant II x n matrix A has one zero eigenvalue and n-l eigenvalues with 

negative real parts, b and c are constant n-vectors, p is a pure number, ‘p,(u) and 'pa (a) are 
functions continuous and bounded on (- m,+m) and satisfying the relation cl(o)rp,(a)>O,ya~(-~, 

+co), and an asterisk denotes transposition. In what follows we shall also assume that the 

set (0 I ‘P, (0) ao, 0 a IQ. v B = (-- ao,ica) is nonempty and the sets of zeros of the functions 'Fl (0) 
and Q(U) coincide. We introduce the function xl(p)= C* (A - pl)-lb, where p is a complex number 

and I a unit matrix, and put 
x = lim P x1 @), x1 @) = x, @) - v-l 

P-0 

Theorem. Let x>O, p>O and let a solution exist of the second order system 

tl'=--'PI(S). O'=t)- 1/$(Tm,(e)+,,_(e)) n 

where T is a positive number satisfying the inequality 

(1.2) 

r> Re x,(io) + x-l! I X2 (ia) I2 + 63 I y.* (10) l*l. Ye E (-w. iLa) (1.3) 

such that 

8' (t) > 0, Vi > 0 (1.4) 

Then a solution z(t),0 (t) of the system (1.1) exists satisfying the inequality 

0‘(0>0, vr>O (1.5) 

If in addition a solution rl (L),O (0 of the system (1.2) and a number E~>O can be found such 
that 

0' (1) ,, p,, Vf > 0 (1.6) 

then a solution :(L),~(L) of the system (1.1) and a number E*>O exists, for whichthe inequality 

0' (L) > E*, Vt> 0 (1.7) 

holds. The theorem and the results of the paper /l/ by Krasovskii together yield the follow- 
ing assertion. 

Corollary 1. Let x>O,p>O and 

*>o, v+>o, vs+o 

Then the necessary condition for the stability in the large of (1.1) is, that the relations 

$ -+d3_--m %(3)dS=+m, 

hold. We note that in the case Of ~~(a)sq~(a) an analogous result /4/ was extended in /S-7/ 
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to multidimensional systems I*). 

The theorem formulated above and Theorem 3 of /2/ together yield the followinq asser~.)::n: 

Corollary 2. Let x>0. c -0. 'F,(O) -=m.(o) ~9, (0 T 2s). the function 11, (cr) be ~‘ont.i:~u.:~-~;.)' 
differentiable and 'r,'(n) have exactly two zeros on the set 10. Zn). Then t!le systerr il. 1; :::s? 
a circular /8/ solution if 

The above result was obtained for the case n= 2. p==O in /9,10/. 

2. T o prove the theorem, we shall have to consider the first order equation 

dl - afi - 9 (8) 

xi7 b - u(e) 

where cz is a nonnegative number and 9((e), u(e) are continuous functions. 

(2.1) 

Lemma 1. Let the function F(o) satisfy on the interval (0,. -1-w) the equatron (2.1) and 
the inequalities 

F (8) > u (0). F (00) > 0. 

Let also the relation 

-$ (8) < 0, v 0 c? {kl 1 II (8) < 0) 

hold and the set 
z (P) = IOlU (8) > 0. 0 > pt 

be nonempty for any value of fi on the same Interval. Then F (0) > 0, Y 0 ;- 0, 

il.21 

Proof. Assume the opposrte, 1.e. let a number U,>%, exist for which F (0,) g 0. Since 

the set S(o) is nonempty, we can find a point 0,>01 such that F(O,)>O. Therefore a number 
tl, E (I&,, 8,) exists such that F' (03) :=: 0, f (%) < 0. Then the relation (2.1) yields a F (e,) = -Q CR,), 
u (e3) < P (tu 6: 0 , and from this 1t follows that u(&)<O, ~(8,)>0 which contradicts (2.2). 

Let us now introduce the numbers h.>O. u >O, 80, the continuously differentiable functions 

w (L), (T (I). (f >, 0). F w, \e > 00) and continuous functions 9 (0)~ ! (@. ("=R '), 

Lemma 2. Let the following conditions hold: 

1) F (0) > 0. v d 3 80 
2) F (0) ;> V’%f (O), 1: 0 2 60 
31 F’ (ev (0) i- \i‘ (0) < 0. v 0 2 e. 

4) P' @IIF (0) - VZ;;j (e)j i i.)/ZF (0) j- up (0) = 0. V 8 > e. 
5) w (I) 2 -E 10. (1) f f (0 (f))P. t 1 > 0 
6) II” (1) + 2A1Y (0 - p (0 (f))lU’ (L) -t- / (0 (f))] < 0, v1 > 0 
7! 0' (0) > 0, 0' (0) -1 / (0 (0)) :> 0. ZW'(0) + F@(O)) < 0 

0 (0) ;> t)o 

Then 

,. ir) > f (0 (0) ,----- - /(3(1!)>0, vt>.O vzu 
(2..3) 

Proof. Consider the function 

V (1) = 1V (1) + ‘/,F ((I (f))’ 

From conditions 7) of the lemma rt follows that V(O)<O. Therefore for sufficiently smali f> 

0 the function V(f) is well defined and V(f)<O. We further assume that V(f) is defined on 113. Tj 

and V(f)< 0, Y z E [O, T]. Then by virtue of conditions 5) we obtain the inequality 

1‘ [o' (0 + f (a (f))]' > 0,5 F (a (I))*, \’ f E 10. Tl (2.41 

This, together with conditions 1' and 7) of the lemma, yields 

l ) See also Kustarov S.N. Estimation of the sector of absolute stability of nonlinear control- 

led systems. Avtoref. dis. na sorskanle uch. st. kand. fiz. mat. nauk. Leningrad, I.GU, ;97?. 
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0. (L) + f (0 (1)) > 0, bJ f E I% Tl 

From the inequalities (2.4) and (2.5) and conditions 1) and 

the lemma for r=[O,T] and this, together with conditions 3) 
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(2.5) 

2) follows the assertion (2.3) of 

and 4) of the lemma, yields the 

relation 
?.F + [1p + F'Fj[o' i-f]---F'Ff g (vzj-v [F'F + 5)/D -JCzjF' +*I = 0, y I E lo, 2-j 

where q,f and F are functions of 0 0) - Therefore using conditions 6) of the lemma we obtain 

V- ’ T2hVdO. vtE[O,T] (2.6) 

Let us now assume that V(f)<O,V (E IO,T)and, that one of the following relations holds: 

V(T)=O, 0(9')=&. Since, as was shown before, when t~[O,T)~'(f)>o. then the relation cl (T) = e. 

cannot hold. On the other hand, from (2.6) follows the inequality V(T)< V(O)erp (-7-W < 0. 

Therefore the function V(~)is defined for all r>O and V(t)<O,Yt1,0. But then, as we have 

shown before, the estimate (2.3) also holds for all t >o. 

Lemma 3. Let 

9 w (8) > 0, t' 0 E R', F (b) > 0, V W < 0, r 0 E (0 If (0) <O) 

and let the set 

S (IN = (0 If v-3 >o, 0 > 6) 

be nonempty for any value of j3. The conditions 2) and 4) of Lemma 2 imply the conditions 1) 

and 3) of this lemma. Lemma 3 is a corollary of Lemma 1. 

Proof of the theorem. We shall first note that a nonsingular linear transformation 

can be used to reduce the system (1.1) to the form /8/ 

Y' = Qy i 0% (a), ll' = 'PI (o), 0' = r'y - x'1 - P% (0) (2.7) 

where Qis a (n-t)~(n-ii) matrix all eigenvalues of which have negative real parts, while 
r and q are (n- I)-vectors. Theorem 1.2.7 of /8/ can be used to show that the inequality 

(1.3)implies the existence of a matrix H= H*>O satisfying the relation 

2Y*aQY + SE.1 -WY - TS' + x-'IvY) + V(QY + gw1 < 0, v I Y I +- I5 I # 0 (2.8) 

Let us introduce the function 

where Y (f).q (f), (T (I) is a 

that by virtue of the 

W (t) = y (t)*Hy (t) + x-1 I r’y(r)l* - (X.'2) lj (1)1 I v 
rp (0) = %(a. f (0) = w (0) + P%(4 

solution of the system (2.7), and assume that r=2iz.'h=O. It is clear 

boundedness of v,(o) and (~~(0)~ a number v>(i exists on !(I for which 

w (I) i z [a' (0 -I- f (0 (t))]” > 0, vt > 0 
Moreover, taking the inequality (2.8) into account we obtain 

W' - 'El IO’ + /I = 2Y'H [Qy+ g r&l + 2r-'r*y[r*(Qy + &I - X~CF~ - q,[r*y - "'1 $- rvJ_c 0. Vl> 0 

This fulfils conditions 5) and 6) of Lemma 2. Let now F(8) be the solution of 

aif - Pl (8) -= 
de F - 1/4x-‘(~ (8) + PP? (8)) (2.9) 

corresponding to the solution q(t),@(t) of the system (1.2) satisfying the inequality (1.4). 

Here 00 = 0 (0). It is clear that in this case conditions 2) and 4) of Lemma 2 hold. Therefore 
by virtue of Lemma 3 so do conditions 1) and 3) of Lemma 2. Thus if we choose, for the solu- 
tion Y(I),? (t),o (t) of the system (2.7), the initial conditions y(O),'(O), ~(0) in such a manner 
that 

0 (0) = eO. Y (0) = 0, 

then condition 7) of Lemma 2 will also hold and so will the inequality (2.3). 
If in addition (1.6) holds, then 

and hence 
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